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SUMMARY 

This  repor t  is submitted in  pa r t i a l  fulfillment of the contract  in "Space 

Flight and Guidance Theory, I '  No. NAS8- 11040. It p re sen t s  a discussion of 

Lage r s t rom and Kevorkian's two-variable expansion method for  the compu- I '  
tat ion of lunar t ra jec tor ies .  Section 2 d i scusses  the gene ra l  background of / 

the method in t e r m s  of singular per turbat ion theory. Section 3 discusses  

the ma jo r  s teps  in the development of a uniformly valid solution for  ear th-  

moon t r a j ec to r i e s  and Section 4 presents  a slightly different approach to the 

same  problem. 
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1. INTRODUCTION 

In refs. ( 3 )  and (4) a new method was  suggested by L a g e r s t r o m  and 

Kevorkian fo r  the computation of lunar  t ra jec tor ies .  

to one which had been  used successfully in a number of singular per turbat ion 

problems of boundary layer  theory ( re fs .  1, 2) .  The resu l t  of approaching 

the lunar t r a j ec to ry  problem as a s ingular  per turbat ion problem was a uni- 

formly  valid solution (i. e. valid everywhere in  the ear th-moon space)  to 

f i r s t  o r d e r  in the p a r a m e t e r  for a ce r t a in  c l a s s  of t ra jec tor ies .  The c l a s s  

of t r a j ec to r i e s  is  that which s t a r t s  in  a neighborhood of o r d e r  ,p- near  the 

e a r t h  and a r r i v e s  nea r  the moon to within a neighborhood of o r d e r  . 
Similar ly  to  other  s ingular  perturbation problems,  this  uniformly valid 

solution was  obtained b y  formulating two solutions, one valid nea r  the e a r t h  

(the "outer solution") and the other valid nea r  the moon (the "inner solution"). 

The inner  solution i s  expressed  in t e r m s  of "blown up" var iables .  

and inner  solutions a r e  left undetermined by introducing a number of con- 

s tants ;  these constants a r e  determined such that the s ingular i t ies  i n  the 

outer  and inner  solutions cancel when they a r e  combined to f o r m  the "com- 

posite solution. ' '  

The method was  s imi l a r  

The outer  

The bas ic  idea of the method w a s  worked out in i t s  application to the 

two-fixed center  problem with spec ia l  init ial  conditions (ref .  3 ) ;  then the 

same  technique was  used in the r e s t r i c t ed  th ree  body problem with m o r e  

genera l  ini t ia l  conditions (ref.  4). One of the mos t  interest ing r e su l t s  w a s  

the finding that the oLter solution mus t  contain a p a r t  which i s  proport ional  

1 



to the small pa rame te r  /I” , o r  e l se  it cannot be matched to the inner  

solution; the outer solution can  thus be interpreted a s  a n  e a r t h  centered 

Kepler ell ipse with a f i r s t  o r d e r  cor rec t ion  to take c a r e  of the moon’s  per -  

turbation. 

i t  w a s  thus stated that a patched conic method could not be accu ra t e ,  unless  

the geocentr ic  e l l ipse w e r e  cor rec ted  for  the moon’s  perturbation. The two- 

variable  expansion method was  thus offered as a n  improvement  over  patched 

conic methods and i t  appeared  to  be ( a t  l ea s t  initially) equally pract ical .  

In comparing this  method with the usual  way of “patching conics”,  

This  report  p re sen t s  a n  explanation of the method ( in  Section 3 ) ,  based  

most ly  on ref. 4, and the beginning of a somewhat different approach (in 

Section 4). 

modesty;  it is an explanation in the sense  that it p r e s e n t s  and d i scusses  the 

ma jo r  s teps  of the developments in  ref.  4, leaving out many of the laborious 

detai ls .  

and understanding of this very  interest ing method; this  r epor t  m a y  thus s e r v e  

a s  a n  introduction to  the reading of refs. 3 and 4 .  

ceded (Section 2) by a genera l  discussion of singular per turbat ion theory,  

based  most ly  on ref. 1 and 2. 

and the conjecture and theorem on which the d iscuss ion  is based,  the au thors  

gratefully acknowledge personal  communication with Dr. Kevorkian. 

The c la im that this  r epor t  is a n  “explanation’’ is  made with a l l  

In this way i t  is hoped that the r eade r  m a y  gain a ful l  appreciat ion 

This  explanation is p re -  

In par t icu lar  with r e spec t  to  this section, 

In Section 1 the beginning of a slightly d i f fe ren t  approach to  the same  

Whereas  the work  by L a g e r s t r o m  and Kevorkian is problem is presented. 

formulated in  iner t ia l  coordinates,  this  new approach  m a k e s  use of rotating 
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coordinates,  and the Jacobi  Integral  in o r d e r  to  solve the problem as  a third 

o r d e r  sys t em of differential  equations. 

. 
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2. DISCUSSION OF THE TWO-VARIABLE EXPANSION METHOD 

The method used by Lage r s t rom and'Kevorkian to formulate  a uniformly 

valid representat ion of ear th-moon t r a j ec to r i e s  is that which is  used in  the 

singular perturbation problems of boundary layer  theory.  A singular per -  

turbation problem may  be charac te r ized  as follows: a differential  equation 

L {,YJ Qtt 6 ) ~  fl and boundary conditions/3/&, €1 = 0 depend on a 

small positive pa rame te r  6 in such a way that the o r d e r  o r  type of 

change when E=a , while the number of boundary conditions r ema ins  unchanged, 

0 Thus, i f  dL represents  the solution of L/x,4,  , one m a y  not 

expect that  approaches U o  uniformly as  5 0. 

Fundamental  to the solution of singular per turbat ion problems is the 

introduction of cer ta in  l imits .  Consider functions f of C , positive and 

continuous in d~ /? and tending to a definite l imit  as  E-> 0; intro- 

duce a new variable , then a l imit  on F{xl E,) is defined x 
X f =  f 

as  

If /= /, the limit 

variable",  since in 

is usually called "outer l imit ,  I '  and X the "outer 

the boundary layer  problem which motivated this formu- 

lation this l imit  p resents  a sat isfactory approximation in the physical  space 

away f r o m  the boundary. 

in  m a n y  problems by putting 

that region of the physical space where  the differential  equation changes 

o r d e r  (or  type) a s  g-0. A s  the inner  var iab le  is kept constant, the 

An "inner var iable ' '  and "inner limit" a r e  obtained 

= ,F; the inner  l imi t  is a n  approximation in k 

4 



physical  var iable  X 

discussed  in t e r m s  of "stretched" o r  "blown-up" var iables .  

of g r e a t  importance a r e  a l so  the concepts of ' [ intermediate  var iable"  and 

tends to &' as E --+- 0 ; it is  as i f  the problem i s  

Theoret ical ly  

' h t e r m e d i a t e  l imit ,  ' I  which a r e  intuitively understood as  obtained by a function 

f ig), where  the o r d e r  of magnitude D&(g,!) is in between o(/) and e&). 
A m o r e  r igorous discussion is given by Kaplun in ref. 1. 

" 

The formulation of a solution based on inner and outer  l imit  is based 

on a "matching" of the two limits. 

why the regions of validity of inner and outer  l imi t s  should overlap,  i t  may 

s e e m  to be surpr i s ing  that this  has  been so successful  in many problems.  

It is  h e r e  that Lage r s t rom and Kaplun have contributed grea t ly  to the under- 

standing of the problem by using the intermediate  expansion to  bridge the 

gap. 

in a n  intuitive manner .  

But since there  is no a -p r io r i  reason  

In ref. 5 Erde ly i  d i scusses  this  in  some m o r e  detail ,  but (as he re )  a l so  

The method by which a uniformly valid solution of singular per turbat ions 

is obtained is based on a conjecture and a theorem. 

solution of the limiting differential  equation (obtained by subjecting the 

differential  equation to the above defined limiting p rocess )  is identical  with 

the limiting approximation of the exact solution. Thus, i f  a n  exact solution 

cannot be obtained directly,  one can get an  approximation (actually a n  

asymptot ic  expansion) by solving the limiting differential  equation. 

validity of this  conjecture i s  supported by a number of problems to which 

exact  solutions a r e  available.  

The conjecture is: the 

The 
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In a singular perturbation problem it wil l  be necessa ry  to  combine at 

leas t  two limiting solutions (i. e.  inner  and outer)  to obtain a uniformly valid 

solution, that  i s  a solution valid in  the en t i re  physical  space of the var iables .  

Kaplun's extension theorem bridges the gap which may  ex is t  between the 

regions of validity of the limiting solutions. 

sion theorem requi res  the definition of "equivalence classes" .  Let! and 9 
be functions of E , positive and continuous and tending to a definite limit 

The formulation of the exten- 

a s  €*O, then belong to the same  equivalence c l a s s  

if 

A par t i a l  order ing of equivalence c l a s s e s  is defined by 

A se t  s of equivalence c l a s s e s  is convex i f ,  fo r  eve ry  o r d  { and o r d f  

in 5, o r d  # 4 o r d &  implies  o rd  k is in 5 . Openand  

closed convex sets  of equivalence c l a s s e s  a r e  defined according to  the usual  

definitions of set theory.  The extension theo rem may  now be formulated as: 

If a n  approximation is valid to o r d e r  E in a closed se t  s its domain 

of validity may  be extended to a n  open convex s e t  5 , containing 5 . 
Thus, the inner and outer  expansions a r e  valid in  l a r g e r  regions than 

those for  which they were  derived. The regions of validity of inner  and outer 

expansions may  now overlap o r  e l s e  they m a y  be joined by a n  intermediate  

expansion. Whether the inner  and outer  expansions a r e  matched d i rec t ly  

6 



o r  by the use of a n  intermediate  expansion, the matching is  per formed by 

using overlapping regions of validity provided by the extension theorem. 

It wil l  be seen  that in the earth-moon t r a j ec to ry  problem the matching can 

be pe r fo rmed  direct ly  without the use of a n  intermediate  expansion. 

The following i l lustrat ion may be of some help in understanding the 

x meaning of the expansion theorem. In f igure 1 the shaded a r e a s  in the 

space indicate the regions of validity of inner  and outer expansions in a 

problem with singularity a t  x = 0 . 

Intermediate Expansion x 

Fig. 1 EXTENSION THEOREM 

The outer  expansion i s  valid fo r  a range of X bounded away f r o m  zero.  

The region for  the inner  expansion shows the typical behavior near  the 

singularity:  As E tends to zero the physical variable x tends to zero  

a l so ;  the inner  var iable  x,= c remains  finite. It is c l ea r  that  for  

sma l l  1 the regions of validity of inner  and outer  expansions do not over-  

7 



lap. 

validity, indicated by the dashed l ines  in f ig .  1. These regions can now be 

But the expansion theorem provides for sma l l  additional regions of 

used to provide overlap with a n  intermediate  expansion (obtained by intro- 

ducing the intermediate var iable  h' = - 

and matching can be performed.  

,x 
, o r d E  C f i $ ) C o r d /  ) 

f f i g )  

The plan for  formulating a uniformly valid solution of a singular pe r -  

turbation problem i s  now c lear .  

is obtained, satisfying some of the boundary conditions. Typically, the 

boundary conditions near  the singularity a r e  neglected, but the outer  solution 

must  have as many a r b i t r a r y  constants a s  t he re  a r e  neglected boundary 

conditions. 

An outer solution of the differential  equation 

Next, the problem i s  "blown up" in the region near  the singularity 

by the t ransformation to inner  var iables .  The boundary conditions which 

were  neglected in the outer  solution can now be sat isf ied by the inner  solution, 

but the other  boundary conditions wil l  in genera l  not make sense .  

the inner  solution i s  par t ly  indeterminate.  

the inner  and outer solutions a r e  "matched" a s  follows. 

Therefore  

To remove th is  indeterminacy 

The outer  solution 

i s  evaluated a t  the inner region, the inner  solution is evaluated at the outer 

region and these two functions a r e  equated a f te r  the introduction of the t r ans -  

. Finally,  a "composite solution" is  obtained by x formation X.= +--- 

f 7%) 
adding the inner and outer  solutions and subtracting e i ther  the inner solution 

evaluated at the outer region o r  the outer  solution evaluated a t  the inner - 

region. 

dition. 

This  e i the r /o r  condition re f lec ts  of cour se  ju s t  the matching con- 

The matching and the formulat ion of a composite solution descr ibed  

8 



h e r e  i s  possible when the regions of validity of inner  and outer  expansions 

overlap,  if this  i s  not the case  the same p rocedures  have to be followed on 

e i the r  side of a n  intermediate  expansion. 

The extension theorem is the bas i s  f o r  s u c c e s s  in matching; the con- 

j ec tu re  makes  it plausible that the composite solution i s  uniformly valid, 

even though the inner  and outer  solutions themselves  a re  only valid in  the i r  

respect ive regions.  

The application of these  principles to  the ear th-moon t r a j ec to ry  problem 

t akes  the following form.  

th ree  body problem ( in  non-rotating coordinates) a r e  formulated with one of 

the coordinates,  X , a s  the independent var iable .  Uniformly valid expres -  

s ions a r e  sought fo r  the t ime  and the other  coordinate as  functions of X and 

the small p a r a m e t e r  /L" , the ear th-moon mass ratio.  

influence of the moon i s  s een  in the equations of motion a s  a per turbat ion 

(proport ional  to&) of the Kepler equations. 

s ingular i ty  is located a t  

the moon itself is the ma jo r  force. 

physical  var iab les  

of the t ra jectory.  

and y 

The equations of motion of the planar  r e s t r i c t ed  

Near  the e a r t h  the 

Clear ly ,  in this  problem the 

)(- I ,  since nea r  the moon the at t ract ion of 

An outer  solution i s  formulated in  the 

X , & and y ; it  desc r ibes  the ear th-centered  p a r t  

An inner  solution i s  formulated in the "blown-up" var iab les  

- - - 
, & , the differential equations for  which show the moon ' s  

a t t rac t ion  a s  the major  force .  

asymptot ic  expansions of which the separa te  t e r m s  can  be obtained by sub- 

In principle the outer  and inner solutions a r e  

9 



in  the equations of motion, order ing the r e s u l t s  according to powers  of /c" 

and solving the equations for  

ma jo r  r e su l t  of L a g e r s t r o m ' s  and Kevorkian 's  investigation was  the finding 

that, in  o r d e r  to formulate  a f i r s t  o rde r  solution, the outer  solution m u s t  

contain the cor rec t ion  of o r d e r  /LL to the ear th-centered  Kepler t ra jec tory .  

The r eason  is  that the angular  momentum nea r  the moon (for a passage  at 

distance of order /  ) is of o rde r  ,A, , and can  thus only be defined when 

t e r m s  of o rde r  a r e  included in  the approach t ra jec tory .  

of inner  and outer solutions is per formed by equating t e r m  by t e r m  the r e s u l t s  

of evaluating the outer  solution at 

th i s  purpose the inner  a s  wel l  as  the outer  solution a r e  expres sed  in  the 

inner  variable.  

cen tered  hyperbola and the phase constant of the moon. 

solution i s  obtained by adding the inner and outer  solutions and subtract ing 

the outer  expansion of the inner  solution. 

solutions it is c lear  that  no intermediate  solution i s  required.  

2 C )  y c j  t,, Y , , / f f { ,  in  succession.  A 

e 

The matching 

- 
X = / and the inner  a t  X = - rp ; fo r  

The r e su l t s  of the matching a r e  the e lements  of the moon- 

The composite 

F r o m  the f o r m  of inner  and outer  

In the i r  f i r s t  paper on the three-body problem (ref .  8) L a g e r s t r o m  

and Kevorkian t reated the problem of two fixed force  cen te r s  (the Euler  

problem).  They d iscussed  t r a j ec to r i e s  which leave f r o m  the center  of the 

l a r g e r  m a s s ,  the Kepler pa r t  of the outbound t r a j ec to ry  being a s t ra ight  

line. 

could indeed be obtained and 2 )  the outer solution m u s t  contain a cor rec t ion  

of o r d e r  ,,fG in  order  t o  be able  to determine the constants  of the inner  

The major  resu l t  was  that 1) a uniformly valid solution to o r d e r  ,Ab 

10 



solution. 

expansions a r e  of simple f o r m  and therefore  the pr inciples  of the method a r e  

c l ea r ly  demonstrated.  

p rac t i ca l  r e s t r i c t ed  three  body problem with a r b i t r a r y  init ial  conditions 

(although r e s t r i c t ed  to a neighborhood of o r d e r +  near  the ear th) .  

following the same method in principle, the detai ls  of the analysis  a r e  some- 

what obscured by the added difficulties f r o m  the m o r e  genera l  init ial  condi- 

t ions and the motion of the moon. 

to this  paper;  i t  i n t e rp re t s  and explains the method by lifting out the essent ia l  

difficulties and omitting all easily understood details .  

d i scuss  some numer ica l  aspects .  

Because of the ve ry  special  init ial  conditions the outer  and inner  I 
I 
I 

In the i r  second paper  ( ref .  9) they t rea ted  the m o r e  

While 

The following section r e f e r s  in par t icu lar  

References 10 and 11 

The following sect ion contains an  outline and discussion of ref.  9. It 

is hoped that, by concentrating on the ma jo r  difficulties, that  section, together 

with the genera l  discussion in  this section, wil l  be useful for  the be t te r  under- 

standing and appreciat ion of the v e r y  interesting method of Lage r s t rom and 

Kevorkian. 

11 



3 .  TWO-VARIABLE EXPANSION METHOD FOR EARTH-MOON 
TRAJECTORIES 

3 .  1 Equations of Motion; Outer and Inner Var iab les  

In geocentric,  non-dimensional, iner t ia l  coordinates X , Y the equa- 

tions of motion for  the planar  r e s t r i c t ed  th ree  body problem a r e :  

where 

, and the coordinates 

p + y "  
,& i s  the ear th-moon m a s s  ratio,  , / c L  = -------- 

of the moon a r e  

'7- i s  a phase angle which i s  to be determined la te r .  

The goal is to formulate  uniformly valid express ions  (i. e. valid near  

the ea r th  as well as near  the moon) to order,& fo r  t r a j ec to r i e s  which 

leave f rom a neighborhood of o rde r  ,4c near  the ea r th  and reach  a neighbor- 

hood of o r d e r p  near  the moon. 

The outer  var iables ,  to be used for  the outbound t r a j ec to ry  near  the 

ear th ,  a r e  the physical var iab les  , \' r, . The inner  var iab les  wil l  be 
. )  

12 



This  choice a s s u r e s  that the motion near  the moon i s  Keplerian up to 

and including the f i r s t  o rde r  of /I” and that the velocity f a r  f rom the moon 

is of the same o r d e r  (i. e. of order  1) as the velocity f a r  f r o m  the ear th .  

The additional phase angle is  introduced so that * can be made to 
- 

vanish a t  perilune.  

It is  interest ing to note that i f  a scale  factor  of /A- 1’3 i s  used in the 

- 
definition of % and 7 and the t ime is left unscaled, the equations of 

- 
motion in t e r m s  of 2 , 7 and t a f t e r  letting /L- 0 a r e  the Hill 

equations; these equations a r e  valid i n  Hil l ’s  region, i. e .  a region of o rde r  

1 ~ ~ ’ ~  near the moon. If a n  intermediate solution w e r e  required,  these equa- 

t ions could provide it.  It wi l l  be seen  that the inner and outer  solutions can 

be matched without using an  intermediate  solution, although this  cannot be 

expected a pr ior i .  Apparently, for  the c l a s s  of t r a j ec to r i e s  considered 

h e r e  (i. e .  coming f rom a neighborhood of order,Lc near  the moon), the 

passage through Hil l ’s  region is so  f a s t  that Hill’s equations do not need to 

be considered. 

It wil l  be convenient to introduce the coordinate X’ a s  the independent 

var iab le ;  the matching of inner and outer  solutions is then done on the bas i s  

c 

of distance instead of t ime. The equations of motion in the outer  var iab les  

13 



The equations of motion in inner  var iab les ,  valid near  the moon, a r e  

and do not have to be Keplerian up to and including the f i r s t  o r d e r  of /Lc- 
wri t ten  here .  T e r m s  proportional to the f i r s t  power of,/c, a r e  not present  

- 
because of the scaling of the var iab les  and because the moon centered X , 

7 axes  a r e  taken para l le l  to the ea r th  centered X , y axes .  

3 . 2  Outer Expansion 

The right hand s ides  of equs.  (4) r ep resen t  sma l l  per turbat ions due to 

the moon; near  the ea r th  the solution of equ. (4)  is thus near ly  Keplerian and 

it will  be convenient to specify the init ial  conditions of the t r a j ec to ry  by giving 

the values  of the Kepler integrals .  

energy  $, , the angular momentum Ji 
t ime of perigee passage.  

the total  energy must  be 

The integrals  to be chosen a r e  the total  

the location of per igee and the 

In o r d e r  to reach  the neighborhood of the moon, 

c)(/) ; the init ial  velocity is thus d’fr.3) and, 

since the t ra jec tory  leaves f rom a neighborhood of o r d e r  ,Lc.  nea r  the ear th ,  

the angular momentum i s  6(,bk) . Without l o s s  of general i ty  the per igee 

may  be taken to be on the x-axis (on the side of the ea r th  opposite to that of 

the moon). The init ial  conditions a r e  thus 

per igee on x-axis 

and the t ime is  specified b y  requir ing that the Keplerian approximation is 

exact a t  )( = 0 to all o r d e r s  of /cL . 
14 



Since the angular  momentum is of o r d e r  &1’2 it is c l ea r  that, for  the 

c l a s s  of t r a j ec to r i e s  d i scussed  here ,  Y is  a l so  of o r d e r  /-1’. The 

asymptot ic  expansions for  k and may  thus be taken to be Y 
(7) 

and 

and y, a re  found b y  The differential  equatjons for  *Lz , t, , 

substituting (7) and (8) into the equations of motion (4) and by order ing  the 

r e su l t s  according to powers  of ,,& . The equations for  ic and Y4 
of course  jus t  the Keplerian equations (equ. 4 with zero  in the right handsides)  

and the i r  solutions do not have to be repeated he re .  

m u s t  be pointed out. 

the nondimensional gravitational constant, it  is not subjected to  the limit 

process .  F u r t h e r m o r e ,  the angular momentum constant has been wr i t ten  

as  /44, 4 
the express ions  fo r  the Keplerian pa r t  of the t ra jectory.  

to  be in contradiction with the principle of the singular per turbat ion method 

according to which the zero-order  solution would be independent of the 

small pa rame te r .  

p a r t  r e su l t s  i n  somewhat more  convenient expressions.  

YjZ 

a re  

However, one detai l  

Whenever the p a r a m e t e r  /c” appea r s  as ( / -,u. ), 

and fo r  these  two reasons  the pa rame te r  ,,.{L a p p e a r s  thus in 

This  seems at first 

Allowing the small pa rame te r  to appear  in  the Kepler ian 

The first p a r t  of 

t 6, / L L )  is now wr i t ten  a s  
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If the solution had been s t a r t ed  with .t'o, o() , according to a s t r i c t  

application of the l imit  p rocess  i t  would be necessa ry  to consider  a separa te  

"boundary layer" near  the ea r th ,  because the relative o r d e r s  of magnitude 

of the t e r m s  in (X, a r e  different for  )( = C(i) and x = C / l / . ) .  

This  nonuniformity has  nothing to do with the moon's  per turbat ion and is 

taken c a r e  of by letting /b  appear  in the Keplerian solution. 

Yl are: 
The equations for  the first o r d e r  cor rec t ions  4 and 

1 

+ 
bo 

Because the initial conditions have been chosen such that the Kepler solution 

i s  exactly valid a t  X=O , the init ial  conditions for  c/ and y, a r e  

simply 

3 .  3 F i r s t  Order  Correct ions in Outer Expansion 

The f i r s t  o rder  in tegra ls  of (10) and (11) a r e  eas i ly  obtained a s  

and 

16 



In principle k ,  and y, a r e  thus obtained by quadra tures  but so  far 

no analytic express ions  f o r  t and have been found. The functions ,- 
I Y, v 

and 

be studied by express ing  the severa l  p a r t s  of #$- and 

nea r  x = I . The r e su l t s  a r e  

$f2 a r e  unbounded f o r  X + / and their  behavior near  X = / can 

in Taylor s e r i e s  tu 

where  @-(i) and /7()o a r e  the regular  p a r t s  of 6 and , 

and 

which is the velocity of the Keplerian t ra jec tory  at x =  / . 
Using (14) and (15) the f i r s t  o r d e r  cor rec t ions  to the Keplerian p a r t  

of the outer expansion may be wri t ten as 

Since (at l ea s t  to this  time) no analytic solutions for  z!, and y, have 

been found, the complete t ra jec tory  can only be computed by evaluating the 

quadra tures  numerically.  Clearly, this  causes  numer ica l  difficulties be- 

cause of the singular behavior near  X = / . It is of some help in es tabl ish-  

17 



ing a computer p rogram based  on this method that L, (XI  and > ( x )  

on only one parameter ,  namely the total  energy  

depend 

- p" . The correc t ions  

could thus be computed and tabular ized once and for  all. Also, near  x =  / 

t and may be expres sed  much m o r e  s imply as  
I 

where  7 and c!! a r e  functions of the total  energy alone. Unfortunately, 

')' and p{ become unbounded as ,p- 1 ,  that  is fo r  the minimum 

energy  t ra jec tor ies .  This  difficulty has  been t rea ted  in  detai l  i n  ref.  6 .  

Equ. (19) and (20), and par t icu lar ly  the functions $' and , play 

a n  important role in  the matching of outer  and inner  expansions. 

3 . 4  The Inner Expansion 
- 

The equations in the inner var iab les  X , 7 and k have /?L only 

to the second and higher  powers.  Since the p re sen t  purpose is to  develop 

a solution to f i r s t  o r d e r  in  the moon centered  p a r t  of the t ra jec tory  is 

thus Keplerian and, in par t icu lar ,  hyperbolic. It wil l  be convenient to 

cha rac t e r i ze  this hyperbola by the four constants 

- I I /  , the 

, the 

% component of velocity at X =  - 

7 component of velocity a t  X = - 00 

- 

/( I 
A V-BU, re lated the direct ion of the asymptote 

% and t ' = O  a t  perilune.  
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In the definition of /4.: , 

- 
is the semimajor  axis ,  the eccentr ic i ty  and F i s  the counter- 

clockwise angle between the X ax i s  and the apse  line of the hyperbola. The 

express ions  

Keplerian) except as they a r e  needed for  the matching of inner  and outer 

- 7 (%,) and t ( z )  do not have to be given h e r e  (s ince they a r e  

solutions. For th i s  purpose their  values as X--cQare needed. These 

are 

as follows readi ly  f r o m  the equations of hyperbolic motion (mos t  conveniently 

by letting the eccent r ic  anomaly approach-  00). 

3. 5 Matching of Inner and Outer Solutions 

The purpose of matching the inner and outer  expansions is to de te rmine  

the constants of the moon,centered hyperbola, thereby a l so  relating the 

s ingular i t ies  in the two expansions in such a way that they cancel  each other  

i n  the composite solution. 

na ture  in  the inner as wel l  a s  the outer solutions, such matching can appar -  

ently be achieved without the use of a n  intermediate  expansion. 

Because the s ingular i t ies  a r e  logarithmic in 

The geometry of the matching is i l lus t ra ted  in Fig.  2,  as much as it 

The par t  of the figbre related to the inner expansion is can  be i l lustrated.  
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drawn in the scaled coordinates  ( 9 I - '4 . ) and mus t  be thought as infinitely 

small in  comparison with the figure fo r  the outer  expansion. 

r emarked  that this  matching is s t r ic t ly  analytical ,  whereas  the "patching" 

of conics is s t r ic t ly  geometr ical .  A d i r ec t  compar ison  of the two methods 

is therefore  difficult; such compar ison  should be based  on the final numer ica l  

r e  sult  s . 

1 

It m a y  be 

OUTER EXPANSION INNER EXPANSION 

F igure  2 GEOMETRY O F  MATCHING 

The matching is per formed by evaluating the outer  expansion at A" - I 
and equating the r e su l t  t e r m  by term to the inner  expansion evaluated at 
- 
,y I -'s , both expansions being expres sed  in  the inner  var iable .  (The 

important  thing is that both expansions a re  expres sed  in the same variable;  

20 



the present  choice of inner variable is s imply for  the sake of convenience.) 

The pa r t  of the outer  expansion identified with 

x -- / by writ ing two t e r m s  of i t s  Taylor  expansion at \ = I : 

Z! is evaluated nea r  
I c 

using equ. (16). The inner  variable is introduced by ,X = /o->( + & (t - 7) 

f r o m  equ. (3),  and if it is  assumed that (t - T )  is small (as it will  be 

shown to be),  t he re  r e su l t s  

4 The introduction of the inner var iable  into the express ion  for  

(equ. 19) is taken c a r e  of by putting (/-)(I =,,,,L% , the term cos  ( h - 7 )  

in  equ. (3) being put equal to unity with enough accuracy  since k 1 

plied by p- . 
sion evaluated nea r  

is multi-  

By combining equs. ( 7 ) ,  ( 9 ) ,  (19) and (23), the outer  expan- 

X = / and expres sed  ir, the inner var iable  is thus 

F r o m  equ. (3) and (22) follows fo r  the inner  expansion evaluated at X - -  -p 

Now, i f  the phase angle 7 is chosen to  be composed of s eve ra l  p a r t s  

/” as  
according to powers  of 

21 



the third t e r m  in equ. (24) i s  to f i r s t  o r d e r  in  

and the two express ions  for  ‘t ( a >  can be made identical  by making the 

following choices for  , k, , and T. 

L1, = Lc 

- t  - a Note that this  implies that (/ f&,  ”) = 

by the matching of the expansions for  

; this will  be conf 

Y -  
Y F r o m  equ. (8),  (20) and ( 3 )  follow for  the outer  expansion of 

evaluated nea r  = and expressed  in  the inner  var iable  2 , 

rmed  

Since the Keplerian pa r t  of this express ion  i s  multiplied with 

value nea r  is obtained simply by substituting X =  I ; no Taylor  expan- 

sion need be used h e r e  because the second t e r m  would be proport ional  to 

i t s  

X .= I 

F r o m  equ. ( 3 )  and the express ion  for  the inner  expansion, equ. (21 )  

4 follows f o r  the inner expansion evaluated nea r  ,y = - CXY , 
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where i t  i s  again assumed that (t- T )  i s  small, so that ,&k (k - T) = [i -71, 

This  assumption is shown to be valid (a t  l eas t  to o rde r  / L )  by equ. (25) and 

(29).  If then the express ion  f o r  &&) nea r  X= I (equ. (25)),  and the evalu- 

ation of Z (equ. (29) ) ,  which followed f rom the matching of the express ions  

for  the t ime,  a r e  used, t he re  follows for  y Cx-) , 

The express ions  (30) and (31) a r e  made identical  b y  the following choice 

of the constants 7- , , I(, and T , 1- 
2 

i s  a r b i t r a r y  
- /  

The resu l t  = -1 confirms the express ion  = (/fL{y ' which 

w a s  necessa ry  for  the time-matching since f o r  the moon centered hyperbola 

5 / .= (1: tu, zr< With equs. (28), (33) and (34) the moon 

- J $ - 

P and 
centered hyperbola i s  now determined, the constants ,& , ,i! , 

being expressed  as  
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These four constants a r e  real ly  equivalent to L r e e  in tegra ls  because 

so  that a fourth integral  is s t i l l  needed. 

that 2!- p a t  perilune. 

the phase angle T and the or igin of the inner var iable  z!. which a r e  

This is  provided by the condition 

This  condition is satisfied by the proper  choice of 
c 

- 

determined by equ. (27)  fo r  , equ. (32) fo r  7 , and equ. (29) fo r  . k 
The constant A which is needed in equ. (29) is simply 

e 

A.6 7 -XF 
-2 -.I .__ 

It i s  a fortunate c i rcumstance that , the pa r t  of the phase angle / which 

is proport ional  t o , &  , i s ’a rb i t ra ry .  -(- influences {, , and thereby the - 
angular momentum k =/(/./, . With the hyperbola’s  total  energy  de te r -  

mined by 

angular momentum through T 
k, , the perilune dis tance can thus be adjusted by changing the 

/ -  

It may  now be noted that the phase angle ( apa r t  f r o m  the a r b i t r a r y  

contribution p T  ) and two of the hyperbolic constants  depend only on the 

Keplerian pa r t  of the outbound t ra jec tory .  As a m a t t e r  of fact ,  Lage r s t rom 

and Kevorkian derived 7 and 7 in the v e r y  beginning of the i r  ana lys i s  
Lr, t 

, 
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and on the b a s i s  of the outbound Kepler t r a j ec to ry  alone. Fo r  the purpose 

of this  presentat ion of the i r  analysis it w a s  felt  that  the modification in  which 

and 7;, a r e  der ived f rom the matching conditions i s  a l i t t le m o r e  in 
1 

line with the genera l  principle of the method of singular per turbat ions;  this  

principle being the determination of cer ta in  constants,  which leave the inner  

and outer  expansions indeterminate,  f r o m  matching conditions. 

Fu r the rmore ,  i t  is noted that the first o r d e r  cor rec t ions  of the outbound 

t ra jec tory  en ter  into the matching conditions only through the functions y/p) 

(in the determinat ion of 7 ' )  and (d(f)- yi/c)) (in the determination of 

< ). The functions y and -2 become unbounded as  , P A  I , i. e. fo r  

minimum energy  t r a j ec to r i e s ,  but the difference (c(-r) was  shown to be 

finite ( ref .  11). The difference [i- x] may be in te rpre ted  as  the cor rec t ion  

of /( , required i f  Kl were  determined on the bas i s  of the Keplerian 

t r a j ec to ry  alone. Since Kl is  the 7 - intercept  of the approach asymptote  

of the moon-centered hyperbola at x = I , i t  has  been claimed that (d- Y )  

is  a measu re  of the e r r o r  made in the usua l  methods of "patched-conic' '  

computations; (6- u) is then simply the miss -d is tance  of the approach 

t ra jec tory .  Because of the basis  difference in  the two methods (which has  

been pointed out e a r l i e r  in  this report:  patching conics is geometr ic ,  wh 

matching inner  and outer  expansions is  analytic) a comparison on the bas  

of (d- y) tends to come out unfair fqr  the patched-conic method. It 

le 

S 

would be interest ing to see  how the cor rec t ions  L,  and '/, contribute to the 

outbound t r a j ec to ry  near  i t s  intersection with the moon ' s  sphere  of influence. 
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And i f  a thorough comparison of the two methods w e r e  des i red ,  it should of 

course  be based on final numer ica l  r e su l t s  for  representat ive t r a j ec to r i e s  

computed by both methods. 

provided such a comparison, except by pointing out that 

Lage r s t rom and Kevorkian themselves  have not 

( ai-- r,) i s  a measu re  

of the patched conic e r r o r ;  in ref. 5 there  a r e  comparisons with exact ( i . e .  

numerical ly  integrated) t ra jec tor ies ,  but whether o r  not the r e su l t s  say much 

for  the two-variable expansion method depends most ly  on what kind of e r r o r s  

one i s  willing to except. 

3 .  6 The Composite Solution 

The outer and inner  solutions have been formulated and the i r  singular 

behavior has  been identified. By matching these two solutions in  their  over -  

lapping region of validity the phase angle and the constants of the moon 

centered hyperbola have been determined. To complete the work  a composite 

solution must  be formulated.  According to the singular per turbat ion theory 

the composite solution i s  obtained by adding the outer  and inner  solutions 

and subtracting their  common part .  That common pa r t  is ju s t  the inner  

solution evaluated in the outer  region (that i s  for  a t  ? -+ - e), o r  the 

outer  solution evaluated in the inner  region (that is for  X+ I ) ;  these 

two evaluations a r e  identical  because that was  ju s t  the condition f o r  matching. 

Here  it is convenient to use the inner solution evaluated fo r  x--+ -:-. 
According to equ. (8) the outer  solution is 

where  and { a r e  known functions, )/ exhibiting a singularity for  X - - >  /. 
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According to equ. (3) the inner solution is 

x - & 
-/4A ( t  -T), x-  LL 

where  the moon coordinate 

with k >?l = L%L? (2 -T) and Y ( z )  is the equation of the moon-centered 
- .  - 

hyperbola. According to equ. ( 3 )  and ( Z l ) ,  the inner  solution evaluated f o r  

The cornposit; solution fo; \/ is thus 

and  in  the same way the composite solution for  t ( X , p )  i s  found to be 

If analytical  express ions  f o r  f ( A )  and )i,(x) w e r e  available it would 

b e  observed that the i r  singularit ies a r e  cancelled by the s ingular i t ies  of the 

express ions  in  square  bracke ts ;  this  is f o r  instance the case  in the ana lys i s  

f o r  the two-fixed center  problem (ref. 3 ) .  

s ions  for  I!, and y, , the singularit ies mus t  cancel  numerically.  Now, to 

In the absence of analytic expres -  

de te rmine  jus t  the geometry  of the moon centered hyperbola (determined by 

27 



. . 

the constants in equ. (35), the functions k ,  and y,  
needed, only the function ( c f -  x )  is. I - depends on the init ial  con- 

dition -f20nly and can  be computed and tabulated once and for  all. 

if the time-dependency and the en t i re  t ra jec tory  is needed, the functions 

and )'I 

(37) mus t  be computed and their  s ingular i t ies  made to cancel  numerically:  

this  may  be expected to cause some numer ica l  difficulties. 

themselves  a r e  not 

However, 

k, 

, as well as the express ions  in the square  b racke t s  of equs.  (36) and 
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4. THE OUTER EXPANSION IN ROTATING COORDINATES 

In the previous section it was shown that the application of singular 

per turbat ion theory r e su l t s  in a uniformly valid solution to f i r s t  o r d e r  of 

for  a cer ta in  c l a s s  of t ra jec tor ies  in the r e s t r i c t ed  th ree  body problem. 

principle this  is a sa t i s fac tory  solution, but pract ical ly  there  a r e  some 

difficulties because this  solution is left in t e r m s  of quadra tures  which mus t  

be numerical ly  integrated. Fur thermore ,  since the formulation was  c a r r i e d  

out in a non-rotating coordinate sys tem one m a y  a s k  whether a formulation 

in a different coordinate sys tem would be m o r e  advantageous. 

In 

Therefore ,  in  conclusion, the following i t ems  a r e  cited as possibly 

leading to improvements  o r  analytical  simplifications for  this type of f i r s t  

o r d e r  solution: 

1 )  to obtain analytical  approximations for  the quadra tures  which 

depend on some pa rame te r  of the zero-order  ell ipse (in this  ca se  the energy);  

2) to r ep resen t  the problem in a rotating coordinate sys tem as  a third 

o r d e r  sys tem of differential  equations by making use of the Jacobi  Integral. 

An investigation of the second recommendation h a s  been initiated and 

in  what follows the r e su l t s  for  the outer  solution a r e  outlined in  t e r m s  of 

quadra tures .  

to  the choice of a rotating f r ame  of re ference  the choice of polar coordinates 

w a s  a decided advantage for  the following reasons:  

As a r e su l t  of this investigation i t  was  found that in addition 

1)  The solution for  time is  obtained f r o m  the f i r s t  o r d e r  differential  

equation provided by the Jacobi Integral; 
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2) The occurrence of ell iptical  in tegra ls  in  the ze ro -o rde r  solution for  

the t ime is avoided when the radius  i s  used as independent var iab le ;  

3) A solution in polar coordinates readi ly  lends itself to extension to 

th ree  dimensions . 
The detai ls  of this ana lys i s  follow. 
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In the planar res t r ic ted  three body problem a s s u m e  a non-rotating 

ear th-centered  coordinate system with axes  X, Y para l le l  to some iner t ia l  

axes  and let the ear th-moon distance equal  1 while the m a s s e s  of the ea r th  

and moon a r e  1 - p  a n d . f i  respectively and the gravitational constant k2=1. 

The Lagrangian for  a m a s s l e s s  particle a t  (x, y) i s  f r o m  Reference 7: 

l-* t /cc - ,LL (x cos t t y s in  t )  
1 L =  - 
2 r (2 t f2)  t - 

=2 

In this sys tem the moon rotates with angular velocity W = 1  and the 

t ransformation to  a rotating coordinate sys tem X:::, Y::: with the moon a t  unit 

distance on the X::: ax is  is: 

x::: = x cos t t y s in  t 

y:: = - x  s in  t t y cos  t 

where  in polar coordinates relative to the rotating coordinate system: 

x::: = r cos 0::: 
(40) 

y::: - - in ::: 

J, 

and r = r".. The Lagrangian in relative polar  coordinates 

becomes: 

r 1 

where:  r2  = 

4 

Since L" is t ime independent there ex is t s  a n  in tegra l  of the equations of 
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motion known a s  the Jacobi  in tegra l  which is equal to the Jacobi  Constant C'  

f o r  the relative energy. Thus the express ion  for  the relat ive velocity becomes:  

t 

An asymptotic s e r i e s  solution of the following f o r m  is to  be obtained: 

where /u- h .  01. The zero  o r d e r  solution is a two body el l ipse relat ive to 

the e a r t h  with elements  a and b, e ,  i, cu', ,c1 , 7 and constant angular 

momentum j o  and energy ho. It wi l l  be a s sumed  that the init ial  conditions 

a r e  taken a t  the per igee.  Then the solution fo r  t is essent ia l ly  a f i r s t  o r d e r  

approximation to a "Kepler ' s  Equation" for  a spec ia l  c l a s s  of lunar t r a j ec to r i e s  

in the planar  res t r ic ted  three  body problem and to is exactly Kepler ' s  equation 

for  the two body problem: 

I (  
0 

= / 

and 82 is given by: r 1 

where  W i  is a n  init ial  phase angle between the s e m i  ma jo r  axis and the X" 

axis .  Such a zero o r d e r  solution is valid since L a g e r s t r o m  and Kevorkian, 

Ref. 4, have shown that within a small neighborhood of the ea r th  of 0 (,,de ) 

the motion is Keplerian up to o r d e r  /u l t  3d. Herea f t e r  the subscr ip t  ze ro  
4 
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r e f e r s  to values for  the zero  order  solution and the subscr ip t  i r e f e r s  to the 

init ial  conditions. 

The Lagrange equation = 0 provides  the following express ion  

fo r  the change in the total  angular momentum: 

Integrating for  a f i r s t  o r d e r  approximation gives: 

Clear ly  the integrand in  equ. (46) is expressible  as a function of r through 

However due to the t ranscendental  nature of the result ing express ion  eqs.  (44). 

fo r  the integrand an  analytical  integration cannot be obtained directly.  

a n  approximation for the integral  dependent on cer ta in  p a r a m e t e r s  of the ze ro  

o r d e r  solution can be determined and exercis ing choice a s  to the f o r m  of the 

approximation wil l  allow some simplification of the solution for  t. 

becomes:  

Instead 

Now 8::: 

where  the approximation for  the integral  has  been incorporated in P (r) .  

Now the Jacobi  Integral ,  equ. (42)  provides a f i r s t  o r d e r  differential  

equation for  t a f te r  substituting for  6'::: 
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2 
3 r 

and 

r - 
f tb - 

1 

2 where C = 2 ( lo - ho) i s  the energy constant for  a two body orbi t  relative 

to a rotating reference f r ame  and = C' - 2C. Note that in equ. (48) both 

0;  however,  the combination 
1 

r 2  
and P(r) become unbounded as r2  ,-> 

d r  of these t e r m s  should remain  bounded insuring that - is bounded near  the 
dt 

moon. 

Similar ly  0::: I i s  obtained f r o m  equ. (48): 

where  again the pr ime denotes differentiation with respec t  to r. 

This  completes the outline of the outer  .solution. A similar investi-  

gation of the inner solution and the r e su l t s  of matching the solutions wil l  be 

f inal  deciding fac tors  in  the determination of the pract ical i ty  of this  approach. 
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5. CONCLUSION 

Interpreting the r e s t r i c t ed  three  body problem as a s ingular  per turbat ion 

problem re su l t s  in  a uniformly valid solution to first o r d e r  in the small p a r a m e t e r  

/u- fo r  ear th-moon t ra jec tor ies .  

posed of a n  "outer solution, ' '  valid near  the ea r th  and a n  "inner solution, ' '  valid 

near  the moon. 

region of validity by determining ce r t a in  constants (i. e. the ini t ia l  phase angle 

of the moon and the elements  of the moon-centered hyperbola) in such a way 

that  the s ingular i t ies  which appear in  the inner  and outer  solution vanish in  

the construction of the composite solution. The matching constants a r e  ex- 

p r e s s e d  in t e r m s  of the init ial  conditions, with the exception of a p a r t  of 

o r d e r  ,LL in  the phase angle which can  be chosen a r b i t r a r i l y  and can thus be 

used to adjust  the lunar  per igee distance.  

This  solution can  be thought of as being com- 

The outer  and inner solutions a r e  matched in  the i r  common 

It h a s  been shown that the outer  solution mus t  necessar i ly  contain a 

in o r d e r  to make the p a r t  that  is proportional to  the smal l  pa rame te r  ,u 

match  with the inner  solution possible. 

have been anticipated f r o m  a consideration of the o rde r  of magnitude of the 

angular  momenta of inner  and outer solutions. 

cor rec t ion  to the ear th-centered  outbound el l ipse s e e m s  to explain why the 

usua l  patched conic methods ( in  which such a cor rec t ion  is not made)  mus t  

be inaccurate .  But such a s ta tement  mus t  be made with some ca re ,  since 

in  the two methods the matching is  per formed on a ve ry  different bas i s .  

the two-variable expansion method the outer  solution is evaluated at the 

A pos te r io r i  this  conclusion could 

The need fo r  th i s  f i r s t  o r d e r  

In 
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moon 's  distance and equated to the inner  solution evaluated far away f r o m  

the moon, but far away in t e r m s  of the "blown-up" inner  variable.  

th i s  procedure  makes  good sense  analytically,  it is h a r d  to s e e  what it means  

geometr ical ly .  

cen tered  ell ipse (an uncorrected outer  solution) is evaluated at the sphere  

of influence of the moon and equated to the moon centered  hyperbola (the 

inner  solution, but in physical  var iab les )  at that point. To make  a sound 

compar ison  of the two methods,  it should be based on the final numer ica l  

resu l t s ,  o r  at least  one should determine how much the first o r d e r  cor rec t ion  

of the outer  solution contributes to the Kepler e l l ipse up to the moon ' s  sphere  

of influence. 

Although 

On the other  hand, in the patched-conic method the ea r th  

The composite solutions, in par t icu lar  the first o r d e r  cor rec t ion ,  is 

left  in  the f o r m  of quadra tures  for  which no analytic express ions  has  been 

found yet. 

solutions cancel, the singularit ie s must  be evaluated numerically.  

cause numerical  problems i f  the en t i re  t r a j ec to ry  is to be known as a function 

of the time. On the other  hand, i f  it is sufficient to j u s t  know the e lements  

of the moon centered hyperbola,  the quadra tures  need not be evaluated entirely.  

Therefore,  although in theory the s ingular i t ies  of outer  and inner  so 

This  wil l  

Only the p a r t s  of the f i r s t  o r d e r  cor rec t ion  indicated by [ ( f )  and J(P) 
a r e  required,  and in par t icu lar  the i r  difference 

depend only on the total  energy  

all f o r  any interesting range of energies .  

since d and 3' tend to infinity for  minimum energy  t r a j ec to r i e s ,  but even 

(of- r) . These functions 

-pz and can be evaluated once and f o r  

The re  is a n  additional difficulty 
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there  the difference (,$- f) remains  finite. 

These  diff icul t ies  may  limit somewhat the pract ical i ty  of the methods 

depending on how much trouble one would want to go through to wr i t e  a com- 

puter  p rogram that  evaluates  the quadratures .  

g r e a t  i n t e re s t  and a s imi l a r  development may  be attempted along some 

different approach. 

Even so the method is of 

Such a different approach is given in Section 4. 

. 
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